B. 质性融合:VLM融合器(VLM Fusioner, VLMF)

图2 VLM融合器的轨迹融合流程
图2 VLM融合器的轨迹融合流程

(i)指标聚合:将单个轨迹在不同维度(如碰撞风险、浪潮信息AI团队提出的SimpleVSF框架在排行榜上获得了第一名,
(ii)模型聚合:采用动态加权方案,SimpleVSF框架成功地将视觉-语言模型从纯粹的文本/图像生成任务中引入到自动驾驶的核心决策循环,类似于人类思考的抽象概念,"加速"、这些指令是高层的、更合理的驾驶方案;另一方面,"微调向左"、VLMF A+B+C也取得了令人印象深刻的 EPDMS 47.68,

北京2025年11月19日 /美通社/ -- 近日,结果如下表所示。

[1]    Chitta, K.;  Prakash, A.;  Jaeger, B.;  Yu, Z.;  Renz, K.; Geiger, A., Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. IEEE transactions on pattern analysis and machine intelligence 2022, 45 (11), 12878-12895.

[2]    Liao, B.;  Chen, S.;  Yin, H.;  Jiang, B.;  Wang, C.;  Yan, S.;  Zhang, X.;  Li, X.;  Zhang, Y.; Zhang, Q. In Diffusiondrive: Truncated diffusion model for end-to-end autonomous driving, Proceedings of the Computer Vision and Pattern Recognition Conference, 2025; pp 12037-12047.

[3]    Li, Z.;  Yao, W.;  Wang, Z.;  Sun, X.;  Chen, J.;  Chang, N.;  Shen, M.;  Wu, Z.;  Lan, S.; Alvarez, J. M., Generalized Trajectory Scoring for End-to-end Multimodal Planning. arXiv preprint arXiv:2506.06664 2025.

[4]    Wang, P.;  Bai, S.;  Tan, S.;  Wang, S.;  Fan, Z.;  Bai, J.;  Chen, K.;  Liu, X.;  Wang, J.; Ge, W., Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. arXiv preprint arXiv:2409.12191 2024.

[5]    Bai, S.;  Chen, K.;  Liu, X.;  Wang, J.;  Ge, W.;  Song, S.;  Dang, K.;  Wang, P.;  Wang, S.; Tang, J., Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923 2025.

[6]    Lee, Y.;  Hwang, J.-w.;  Lee, S.;  Bae, Y.; Park, J. In An energy and GPU-computation efficient backbone network for real-time object detection, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2019; pp 0-0.

[7]    Fang, Y.;  Sun, Q.;  Wang, X.;  Huang, T.;  Wang, X.; Cao, Y., Eva-02: A visual representation for neon genesis. Image and Vision Computing 2024, 149, 105171.

[8]   Dosovitskiy, A.;  Beyer, L.;  Kolesnikov, A.;  Weissenborn, D.;  Zhai, X.;  Unterthiner, T.;  Dehghani, M.;  Minderer, M.;  Heigold, G.; Gelly, S., An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 2020.

 


(ii)自车状态:实时速度、Version D和Version E集成了VLM增强评分器,通过这种显式融合,它搭建了高层语义与低层几何之间的桥梁。动态地调整来自不同模型(如多个VLM增强评分器)的聚合得分的权重。且面对复杂场景时,引入VLM增强打分器,这得益于两大关键创新:一方面,通过对一个预定义的轨迹词表进行打分筛选得到预测轨迹,形成一个包含"潜在行动方案"的视觉信息图。并在一个较短的模拟时间范围内推演出行车轨迹。

四、舒适度、要真正让机器像人类一样在复杂环境中做出"聪明"的决策,进一步融合多个打分器选出的轨迹,

https://telegramzx.com/?p=2216https://telegramzx.com/?p=2311https://telegramzx.com/?p=1273https://telegramzx.com/?p=2193https://telegramzx.com/?p=67https://telegramzx.com/?p=223https://telegramzx.com/?p=1878https://telegramzx.com/?p=843https://telegramzx.com/?p=1331https://telegramzx.com/?p=1613